skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mueller, Klaus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Initialization profoundly affects evolutionary algorithm (EA) efficacy by dictating search trajectories and convergence. This study introduces a hybrid initialization strategy combining empty-space search algorithm (ESA) and opposition-based learning (OBL). OBL initially generates a diverse population, subsequently augmented by ESA, which identifies under-explored regions. This synergy enhances population diversity, accelerates convergence, and improves EA performance on complex, high-dimensional optimization problems. Benchmark results demonstrate the proposed method's superiority in solution quality and convergence speed compared to conventional initialization techniques. 
    more » « less
    Free, publicly-accessible full text available July 14, 2026
  2. Free, publicly-accessible full text available April 25, 2026
  3. The issue of fairness in decision-making is a critical one, especially given the variety of stakeholder demands for differing and mutually incompatible versions of fairness. Adopting a strategic interaction of perspectives provides an alternative to enforcing a singular standard of fairness. We present a web-based software application, FairPlay, that enables multiple stakeholders to debias datasets collaboratively. With FairPlay, users can negotiate and arrive at a mutually acceptable outcome without a universally agreed-upon theory of fairness. In the absence of such a tool, reaching a consensus would be highly challenging due to the lack of a systematic negotiation process and the inability to modify and observe changes. We have conducted user studies that demonstrate the success of FairPlay, as users could reach a consensus within about five rounds of gameplay, illustrating the application's potential for enhancing fairness in AI systems. 
    more » « less
    Free, publicly-accessible full text available May 2, 2026
  4. Free, publicly-accessible full text available May 1, 2026
  5. We present a comprehensive pipeline, integrated with a visual analytics system called GapMiner, capable of exploring and exploiting untapped opportunities within the empty regions of high-dimensional datasets. Our approach utilizes a novel Empty-Space Search Algorithm (ESA) to identify the center points of these uncharted voids, which represent reservoirs for potentially valuable new configurations. Initially, this process is guided by user interactions through GapMiner, which visualizes Empty-Space Configurations (ESCs) within the context of the dataset and allows domain experts to explore and refine ESCs for subsequent validation in domain experiments or simulations. These activities iteratively enhance the dataset and contribute to training a connected deep neural network (DNN). As training progresses, the DNN gradually assumes the role of identifying and validating high-potential ESCs, reducing the need for direct user involvement. Once the DNN achieves sufficient accuracy, it autonomously guides the exploration of optimal configurations by predicting performance and refining configurations through a combination of gradient ascent and improved empty-space searches. Domain experts were actively involved throughout the system’s development. Our findings demonstrate that this methodology consistently generates superior novel configurations compared to conventional randomization-based approaches. We illustrate its effectiveness in multiple case studies with diverse objectives. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. The success of DL can be attributed to hours of parameter and architecture tuning by human experts. Neural Architecture Search (NAS) techniques aim to solve this problem by automating the search procedure for DNN architectures making it possible for non-experts to work with DNNs. Specifically, One-shot NAS techniques have recently gained popularity as they are known to reduce the search time for NAS techniques. One-Shot NAS works by training a large template network through parameter sharing which includes all the candidate NNs. This is followed by applying a procedure to rank its components through evaluating the possible candidate architectures chosen randomly. However, as these search models become increasingly powerful and diverse, they become harder to understand. Consequently, even though the search results work well, it is hard to identify search biases and control the search progression, hence a need for explainability and human-in-the-loop (HIL) One-Shot NAS. To alleviate these problems, we present NAS-Navigator, a visual analytics (VA) system aiming to solve three problems with One-Shot NAS; explainability, HIL design, and performance improvements compared to existing state-of-the-art (SOTA) techniques. NAS-Navigator gives full control of NAS back in the hands of the users while still keeping the perks of automated search, thus assisting non-expert users. Analysts can use their domain knowledge aided by cues from the interface to guide the search. Evaluation results confirm the performance of our improved One-Shot NAS algorithm is comparable to other SOTA techniques. While adding Visual Analytics (VA) using NAS-Navigator shows further improvements in search time and performance. We designed our interface in collaboration with several deep learning researchers and evaluated NAS-Navigator through a control experiment and expert interviews. 
    more » « less
  7. Parallel coordinate plots (PCPs) have been widely used for high-dimensional (HD) data storytelling because they allow for presenting a large number of dimensions without distortions. The axes ordering in PCP presents a particular story from the data based on the user perception of PCP polylines. Existing works focus on directly optimizing for PCP axes ordering based on some common analysis tasks like clustering, neighborhood, and correlation. However, direct optimization for PCP axes based on these common properties is restrictive because it does not account for multiple properties occurring between the axes, and for local properties that occur in small regions in the data. Also, many of these techniques do not support the human-in-the-loop (HIL) paradigm, which is crucial (i) for explainability and (ii) in cases where no single reordering scheme fits the users’ goals. To alleviate these problems, we present PC-Expo, a real-time visual analytics framework for all-in-one PCP line pattern detection and axes reordering. We studied the connection of line patterns in PCPs with different data analysis tasks and datasets. PC-Expo expands prior work on PCP axes reordering by developing real-time, local detection schemes for the 12 most common analysis tasks (properties). Users can choose the story they want to present with PCPs by optimizing directly over their choice of properties. These properties can be ranked, or combined using individual weights, creating a custom optimization scheme for axes reordering. Users can control the granularity at which they want to work with their detection scheme in the data, allowing exploration of local regions. PC-Expo also supports HIL axes reordering via local-property visualization, which shows the regions of granular activity for every axis pair. Local-property visualization is helpful for PCP axes reordering based on multiple properties, when no single reordering scheme fits the user goals. A comprehensive evaluation was done with real users and diverse datasets confirm the efficacy of PC-Expo in data storytelling with PCPs. 
    more » « less
  8. With the rise of AI, algorithms have become better at learning underlying patterns from the training data including ingrained social biases based on gender, race, etc. Deployment of such algorithms to domains such as hiring, healthcare, law enforcement, etc. has raised serious concerns about fairness, accountability, trust and interpretability in machine learning algorithms. To alleviate this problem, we propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases from tabular datasets. It uses a graphical causal model to represent causal relationships among different features in the dataset and as a medium to inject domain knowledge. A user can detect the presence of bias against a group, say females, or a subgroup, say black females, by identifying unfair causal relationships in the causal network and using an array of fairness metrics. Thereafter, the user can mitigate bias by refining the causal model and acting on the unfair causal edges. For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset based on the current causal model while ensuring a minimal change from the original dataset. Users can visually assess the impact of their interactions on different fairness metrics, utility metrics, data distortion, and the underlying data distribution. Once satisfied, they can download the debiased dataset and use it for any downstream application for fairer predictions. We evaluate D-BIAS by conducting experiments on 3 datasets and also a formal user study. We found that D-BIAS helps reduce bias significantly compared to the baseline debiasing approach across different fairness metrics while incurring little data distortion and a small loss in utility. Moreover, our human-in-the-loop based approach significantly outperforms an automated approach on trust, interpretability and accountability. 
    more » « less